I work at the intersection
of data science, technology and human-centred design.
Former astrophysicist &
e-Research/data consultant.


Data Science at Made.com

Data Science at Made.com

 

MADE.com is a UK-based online retailer with an award-winning business model. Foregoing traditional storefronts, Made has only three UK-based showrooms and works directly with designers and manufacturers to produce high-quality, thoughtfully designed furniture at remarkable prices.

As a made-to-order online company with furniture moving from ship to lounge room, leveraging production and customer data is critical to managing their supply chain. If too many products are made the company loses money is dock or storage fees; too little and customers wait longer to receive the orders. Made also prides itself on keeping ahead of trends, so predicting customer behaviour is vital to their business.

What I love most about Made.com is their TalentLAB crowdfunding platform. It’s a place to discover new talent and unique products you won’t find anywhere else. TalentLAB was born out of the MADE Emerging Talent Award – an annual competition for up-and-coming designers to break into the industry, and get their product made and sold.

We believe that great design is for everyone. It surprises, tells a story and makes the everyday a little less ordinary. At MADE we design for how people live today. No champagne, no private view, just affordable high-end design at your fingertips.
— Made.com

An evening of networking & talks

We had the privilege of spending the evening with Made’s CEO, Talent Acquisition team, and Data Science team. Being a design focussed retailer, it should come as no surprise that visiting Made’s London Headquarters was a really lovely experience. We were welcomed with drinks and nibbles, and more food following talks from Made’s leaders. Talks focussed on Made’s current and future data science aspirations, and why growing their team is critical to their future success.

Where does Data Science fit in?


 

Understanding the Customer Lifecycle

  • Considered purchases means long sales cycles.

  • Cross device browsing is hard to track – but here to stay

  • User journeys do not start at their site, they start in search engines.

  • There is untapped potential to drive repeat purchases.


Supply Chain

& Forecasting

  • Accurate sales forecasting is key to good lead times

  • Predicting forecast hits at the design stage could be game changing


Customer Service
Automation

  • The customer service team currently scales with sales

  • Advances in AI means many simple customer service queries should be able to be automated.


Visual Analysis
& Recommendations

  • Visual search – finding products of a similar colour, shape, or style.

  • Identifying products that work well together.

  • Learning to understand a customers style.

 
 







The Shoppar Facial Analytics Platform

The Shoppar Facial Analytics Platform

An evening with Mike Butcher from Tech Crunch

An evening with Mike Butcher from Tech Crunch